Abstract

The spontaneous aggregation of chitosan and carboxymethylchitosan polymers can be advantageous for the enzyme confinement on these colloidal systems during immobilization processes. The initial crucial step involves the polymer-enzyme adduct formation. The objective here is to determine the interactions that drive the adduct formation between these polymers and β-galactosidase from Bacillus circulans. The chemical characterization of chitosan and its carboxymethyl-derivate allowed to explain their colloidal behavior and design the four-unit fragments ligands used for the docking study. The deacetylation degree (0.6 times lower), isoelectric point (5.2 instead 6.4) and substitution degree (DSO = 1.779 and DS2N = 0.441) of carboxymenthylchitosan are due to the hydroxide concentration (>25%) and 30 °C modification conditions. Favorable Van der Waals and H-bond interactions between chitosan-β-galactosidase and contribution of electrostatic attraction mediated by calcium ions for carboxymethylchitosan-β-galactosidase explained the zeta potential and dynamic light scattering results at pH 7.0. These interactions occur onto the external surface of this galactosidase, without affecting the catalytic activity. A cross-linked enzyme aggregates-type model was proposed for the formation of the adducts, based on the complementary experimental-docking results. They contribute understanding the behavior of polyelectrolyte chitosan-derived matrices for enzyme immobilization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call