Abstract

Local means decomposition is an adaptive and nonparametric time–frequency decomposition method for nonstationary and nonlinear signals. However, in practice, local means decomposition is susceptible to mode mixing phenomena and produces different scale oscillations in one mode or similar scale oscillations in different modes, rendering the decomposition results difficult to interpret in terms of physical meansing. The noise-assisted ensemble local means decomposition method not only effectively resolved mode mixing but also generated a new problem, which tolerates residual noise in signal reconstruction. Targeting these shortcomings, this article proposes complementary ensemble local means decomposition, a novel noise-assisted time–frequency analysis method. First, an ensemble of white noise is added to the original signal via complementary positive and negative pairs. Second, local means decomposition is applied to decompose the noisy signals into a series of product functions, and the final results are obtained by averaging. The simulation results confirm that complementary ensemble local means decomposition offers an innovative improvement over ensemble local means decomposition in terms of eliminating residual noise. The superiority of the proposed method was further validated on fault signals obtained from faulty railway bearings (rolling element and outer race fault signals).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.