Abstract
This paper reports a dual-contact microelectromechanical switch, which consists of two contacts in a single switch: one with a soft contact material and the other with a hard contact material to achieve low contact resistance and high reliability at the same time under hot switching conditions. In a single switching operation, the proposed dual-contact switch makes contact twice in sequence, where the first contact is made with a hard contact material (Pt-to-Pt) that can withstand an abrupt hot switching condition (high electric field or micro-arcing). The second contact is then accomplished with the soft contact material (Au-to-Au) that has low-contact resistance, through which most of the current flows. In contrast, when the switch releases contact, the Au-to-Au contact is initially detached, and this is followed by the release of the Pt-to-Pt contact. In this way, the dual-contact switch showed longer lifetime than that of a single Au-to-Au contact-only switch by up to fortyfold, and even better lifetime than that of a single Pt-to-Pt contact-only switch by more than two times in open laboratory environments (unpackaged). At the same time, contact resistance of the dual-contact switch was under 0.3 Ω at 50 V of the gate voltage, which is more than seven times smaller than that of the single Pt-to-Pt contact-only switch (2.2 Ω), due to the Au-to-Au contact sub-switch (the contact resistance of the single Au-to-Au contact-only switch was 2.2 Ω).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.