Abstract

Neuromorphic computing is a potential candidate to break the von Neumann bottleneck, in which the trade-off between computational precision and energy consumption remains challenging. In this brief, a complementary memristor cell based on monolayer AlO <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{\textit{x}}$</tex-math> </inline-formula> film is proposed, whose two components exhibit analog (N-Si/AlO <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{\textit{x}}$</tex-math> </inline-formula> /TiN) and digital (N-Si/AlO <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{\textit{x}}$</tex-math> </inline-formula> /Cu) resistive switching behaviors. Typical synapse behaviors including spike time-dependent plasticity (STDP) and long-term potentiation/depression (LTP/LTD) are emulated in different working modes. Moreover, with the high/low resistive state (HRS/LRS) in the digital component, the cell shows low/high accuracies with different power consumption, which are <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim$</tex-math> </inline-formula> 82% and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\sim$</tex-math> </inline-formula> 94% in the Modified National Institute of Standards and Technology (MNIST) recognition task. Our findings may provide the potential to develop energy-efficient, feasible integrating, and mixed-precision neuromorphic computing based on AlO <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$_{\textit{x}}$</tex-math> </inline-formula> monolayer memristors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call