Abstract

Complementary decompositions of monomial ideals—also known as Stanley decompositions—play an important role in many places in commutative algebra. In this article, we discuss and compare several algorithms for their computation. This includes a classical recursive one, an algorithm already proposed by Janet and a construction proposed by Hironaka in his work on idealistic exponents. We relate Janet’s algorithm to the Janet tree of the Janet basis and extend this idea to Janet-like bases to obtain an optimised algorithm. We show that Hironaka’s construction terminates, if and only if the monomial ideal is quasi-stable. Furthermore, we show that in this case the algorithm of Janet determines the same decomposition more efficiently. Finally, we briefly discuss how these results can be used for the computation of primary and irreducible decompositions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.