Abstract

Advanced electronic devices based on III-N semiconductors, particularly these operated at the high power and high frequency or corrosive atmosphere, need elaboration of new technology for contacts metallization which are thermally and chemically stable. Performed studies aimed at the development of materials for applications in the improved metallization. Due to the unique combination of the metallic electro-thermal conductivity and ceramic resistance to oxidation and thermal stability, the MAX phases were chosen as the materials potentially applicable to this task. Particular interest lies in the MAX phases based on the Ti, Si and C or N atoms, especially on the Ti3SiC2 phase. The paper focuses on a comprehensive characterization of films grown by means of high-temperature magnetron Ti, Si and C co-sputtering. The complementary characterization by X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) is presented.XRD studies pointed out the presence of several phases in the investigated samples, therefore XAS as an atomic sensitive probe was applied to examine the average atomic order around Ti atoms as a function of the technological parameters and to point towards proper procedures to achieve the appropriate stoichiometry around Ti atoms and finally the Ti3SiC2 phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call