Abstract

In old-growth forests, natural disturbances form a complex mosaic of structures, providing a wide diversity of habitats and functions of great importance. Old-growth forests are still often seen as a homogeneous whole and few remote-sensing approaches have been tested to identify their structural diversity, especially in boreal forests. The aim of this study is to use a combination of airborne LiDAR and satellite imagery to identify and discriminate old-growth forest structures resulting from different disturbance histories. The study area, which was located in the mixed boreal forest of Quebec (Canada), is Monts Valin National Park and adjacent managed territories. Balsam fir (Abies balsamea (L.) Mill) is the dominant species in the study area, but hardwood species such as white birch (Betula papyrifera Marsh.) and trembling aspen (Populus tremuloides Michx.) can also be abundant in the early succession stages. Four forest classes were studied: second-growth (logged between 1970 and 1980); transition old-growth (burned in 1920); undisturbed old-growth (unburned for at least 125 years); and disturbed old-growth forest (unburned for at least 125 years, but severely disturbed by an insect outbreak around 1980). A multivariate Random Forest model was used to discriminate the classes on 6466 1 ha tiles, based on 11 complementary LiDAR and satellite-derived indices describing stand vertical and horizontal structure, together with “greenness” and disturbance history over the last 30 years. This model had high predictive efficiency (AUC = 94.2), with 81.8% of the tiles accurately classified. Interestingly, undisturbed old-growth forests exhibited intermediate characteristics compared to transition and disturbed old-growth forests. This emphasizes that some structural attributes recognized as important for the classification of temperate and tropical old-growth forests, such as high vertical complexity, are of lesser relevance for boreal old-growth forests. In comparison to undisturbed old-growth forests, transition old-growth forests had a taller canopy of high “greenness” due to a greater hardwood abundance; disturbed old-growth forests had a higher gap fraction and heterogeneity in tree size; second-growth forests exhibited a lower and more even canopy. Misclassified tiles were explained by spatial variation in disturbance severity or different levels of forest resistance and resilience to disturbance. These misclassifications are also of ecological interest, as they highlight the nuances in structural diversity that are rarely identified by disturbance mapping. A reasonable combination of LiDAR and satellite indices was effective not only in discriminating old-growth forests from second-growth forests, but also identifying their different structures, which result from specific disturbance histories. This method could contribute to effective monitoring of changes in the areas and characteristics old-growth forest that are caused by anthropogenic and natural disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call