Abstract
Peirce-diagonalizable linear transformations on a Euclidean Jordan algebra are of the form L(x)=A·x:=∑ a ij x ij , where A=[a ij ] is a real symmetric matrix and ∑ x ij is the Peirce decomposition of an element x in the algebra with respect to a Jordan frame. Examples of such transformations include Lyapunov transformations and quadratic representations on Euclidean Jordan algebras. Schur (or Hadamard) product of symmetric matrices provides another example. Motivated by a recent generalization of the Schur product theorem, we study general and complementarity properties of such transformations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.