Abstract

The quantitation of long-chain branching (LCB) and short-chain branching (SCB) in polyethylene (PE) was accomplished with a combination of carbon nuclear magnetic resonance (13C NMR) spectroscopy and size exclusion chromatography (SEC) with universal calibration. We demonstrate how the spectroscopic and chromatographic techniques can supplement each other, as neither is capable individually of completely describing the molecular architecture imparted by the various types of branching. The essential lack of impact of SCB on the hydrodynamic volume imposes a limit on SEC for determining this type of branching, whereas highly effective LCB in the PE molecule may not offer a statistically large enough amount of long chains for accurate determination by NMR. A variety of examples are given for PE, showcasing the advantages and shortcomings of each analytical method and their complementarity. Additionally, the importance of choosing an appropriate linear standard and viscosity shielding ratio (ϵ) for the Zimm–Stockmayer branching calculations employed for analyzing SEC data is emphasized with an examination of the effect on the results of using a branched standard and various ϵ values. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 3120–3135, 2000

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.