Abstract

A detailed analysis of Einstein's version of the double-slit experiment, in which one tries to observe both wave and particle properties of light, is performed. Quantum nonseparability appears in the derivation of the interference pattern, which proves to be surprisingly sharp even when the trajectories of the photons have been determined with fairly high accuracy. An information-theoretic approach to this problem leads to a quantitative formulation of Bohr's complementarity principle for the case of the double-slit experiment. A practically realizable version of this experiment, to which the above analysis applies, is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.