Abstract

Astrocytes are the most numerous cells in the central nervous system with a range of homeostatic and regulatory functions. Under normal conditions as well as after ischemia, astrocytes promote neuronal survival. We have previously reported that the complement-derived peptide C3a stimulates neuronal differentiation of neural progenitor cells and protects the immature brain tissue against hypoxic-ischemic injury. Here, we studied the effects of C3a on the response of mouse cortical astrocytes to ischemia. We have found that chemical ischemia, induced by combined inhibition of oxidative phosphorylation and glycolysis, upregulates the expression of C3a receptor in cultured primary astrocytes. C3a treatment protected wild-type but not C3a receptor-deficient astrocytes from cell death induced by chemical ischemia or oxygen-glucose deprivation by reducing ERK signaling and caspase-3 activation. C3a attenuated ischemia-induced upregulation of glial fibrillary acidic protein; however, the protective effects of C3a were not dependent on the presence of the astrocyte intermediate filament system. Pre-treatment of astrocytes with C3a during recovery abrogated the ischemia-induced neuroprotective phenotype of astrocytes. Jointly, these results provide the first evidence that the complement peptide C3a modulates the response of astrocytes to ischemia and increases their ability to cope with ischemic stress.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.