Abstract

Rationale: Previous studies have indicated an important role for complement in atherosclerosis, a lipid-driven chronic inflammatory disease associated to oxidative stress in the vessel wall. However, it remains unclear how complement is activated in the process of atherogenesis. An accepted general model for complement activation in the context of ischemia reperfusion injury is that ischemia induces the exposure of neoepitopes that are recognized by natural self-reactive IgM antibodies, and that in turn activate complement.Objective: We investigated whether a similar phenomenon may be involved in the pathogenesis of atherosclerosis, and whether interfering with this activation event, together with inhibition of subsequent amplification of the cascade at the C3 activation step, can provide protection against atherogenesis.Methods and Results: We utilized C2scFv-Crry, a novel construct consisting of a single chain antibody (scFv) linked to Crry, a complement inhibitor that functions at C3 activation. The scFv moiety was derived from C2 IgM mAb that specifically recognizes phospholipid neoepitopes known to be expressed after ischemia. C2scFv-Crry targeted to the atherosclerotic plaque of Apoe−/− mice, demonstrating expression of the C2 neoepitope. C2scFv-Crry administered twice per week significantly attenuated atherosclerotic plaque in the aorta and aortic root of Apoe−/− mice fed with a high-fat diet (HFD) for either 2 or 4 months, and treatment reduced C3 deposition and membrane attack complex formation as compared to vehicle treated mice. C2scFv-Crry also inhibited the uptake of oxidized low-density-lipoprotein (oxLDL) by peritoneal macrophages, which has been shown to play a role in pathogenesis, and C2scFv-Crry-treated mice had decreased lipid content in the lesion with reduced oxLDL levels in serum compared to vehicle-treated mice. Furthermore, C2scFv-Crry reduced the deposition of endogenous total IgM in the plaque, although it did not alter serum IgM levels, further indicating a role for natural IgM in initiating complement activation.Conclusion: Neoepitope targeted complement inhibitors represent a novel therapeutic approach for atherosclerosis.

Highlights

  • Clinical histological studies indicate that the complement system plays a critical role in atherogenesis [1,2,3]

  • C2scFv-Crry administered twice per week significantly attenuated atherosclerotic plaque in the aorta and aortic root of Apoe−/− mice fed with a high-fat diet (HFD) for either 2 or 4 months, and treatment reduced C3 deposition and membrane attack complex formation as compared to vehicle treated mice

  • C2scFv-Crry inhibited the uptake of oxidized low-density-lipoprotein by peritoneal macrophages, which has been shown to play a role in pathogenesis, and C2scFv-Crry-treated mice had decreased lipid content in the lesion with reduced oxLDL levels in serum compared to vehicle-treated mice

Read more

Summary

Introduction

Clinical histological studies indicate that the complement system plays a critical role in atherogenesis [1,2,3]. Recent human studies indicate that some complement components or complement activation products are associated with the occurrence and development of coronary heart disease [30] and subclinical atherosclerosis in systemic lupus erythematosus patients [31]. These clinical results further support the critical atherogenic role of the complement system. It remains unclear how complement is activated in the process of atherogenesis, and whether inhibition of earlier complement activation products together with the MAC would provide optimum protection against atherogenesis. It has been shown that C5a inhibition reduces atherogenesis, whereas C5a supplementation accelerates it [32, 33]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.