Abstract
Vaccination is the most effective way to control infectious diseases. A variety of microbial pathogens use antigenic variation, an immune evasion strategy that poses a challenge for vaccine development. To understand protective immune responses against such pathogens, we have been studying Borrelia hermsii, a bacterium that causes recurrent bacteremia due to antigenic variation. An IgM response is necessary and sufficient to control B. hermsii infection. We have recently found a selective expansion of B1b cells concurrent with the resolution of B. hermsii bacteremia. B1b cells from convalescent but not naive mice confer long-lasting immunity, but the Ag(s) driving the protective IgM responses is unknown. Herein we demonstrate that convalescent B1b cell-derived IgM recognizes complement factor H-binding protein (FhbA), a B. hermsii outer-surface protein and putative virulence factor that does not undergo antigenic variation and is expressed by all clinical isolates. A progressive increase in the IgM response to FhbA correlated with the kinetics of B1b cell expansion, diminished the severity of bacteremic episodes, and led to the eventual resolution of the infection. These data indicate that FhbA is a specific target for protective B1b cell responses. Ags recognized by B1b cells may be considered as an important component in vaccination strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.