Abstract
Complement-mediated mechanisms are known to play a role in pulmonary inflammation and clearance responses to some types of inhaled particles. The present studies were undertaken to investigate the role of complement in mediating pulmonary inflammation and/or phagocytosis as a function of particle clearance in rats exposed to silica or carbonyl iron (CI) particles. Both particle types were shown to be weak activators of serum complement in vitro. In these studies, normal and complement-depressed (CVF-treated) rats were exposed to aerosols of CI or silica particles for 6 hr at 100 mg/m3. Following exposure, alveolar fluids and cells from sham and dust-exposed animals were recovered by bronchoalveolar lavage (BAL) at several time periods postexposure and measured for a variety of biochemical and cellular indices. In addition, pulmonary macrophages were cultured and studied for morphology and phagocytosis. Our results showed that CI exposure did not produce cellular or biochemical indices of pulmonary inflammation, either in normal or complement-depleted rats. However, fewer phagocytic macrophages were recovered from the lungs of CVF-treated, CI-exposed rats than from normal exposed animals. In contrast, silica inhalation produced a sustained PMN inflammatory response in the lungs of exposed rats, measured up through 1 month postexposure, along with significant increases in BAL fluid levels of LDH, protein, and alkaline phosphatase (P less than 0.05) and deficits in pulmonary macrophage phagocytic functions. Cobra venom factor (CVF) treatment prior to exposure in rats had no significant effect upon the silica-induced parameters, suggesting that complement may not play an important role in the acute pulmonary response to silica. The results indicate that complement may play a role in mediating CI-related macrophage clearance responses but has little effect upon sustained silica-induced pulmonary inflammatory parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.