Abstract

The failure of cystic fibrosis patients to limit chronic infection due to mucoid Pseudomonas aeruginosa might be due to ineffective opsonins produced against this bacterium. Nonopsonizing antibody to the bacterial capsule, mucoid exopolysaccharide (MEP), appears at elevated titers during chronic colonization of cystic fibrosis patients, as do opsonins not specific for MEP. Nonopsonic antibodies to MEP occur naturally in most adults and can be induced in animals by immunization. A limited number of humans produce MEP-specific opsonic antibodies after immunization. The purpose of this study was to compare the activation and deposition of C components onto the bacterial surface in the presence of these different antibodies. Opsonic killing uses the classical C pathway. MEP-specific opsonic and nonopsonic antibodies bound to whole bacteria and activated C to a comparable degree, but opsonic antibody deposited 3 to 40 times more C3 onto bacteria, mostly as C3bi, compared to nonopsonic antibody. In addition, two to three times as much nonopsonic mAb as opsonic mAb (both IgG2b) bound to the bacteria at comparable input concentrations, indicating the difference in C deposition was not due to differences in antibody binding. Non-MEP-specific opsonins also bound C3 to the bacteria, but only a mean of 27 +/- 14% was ester linked, compared with 81 +/- 11% of C3 deposited by MEP-specific opsonins. Immunoprecipitation experiments indicated that two-thirds of the C3 bound in the presence of MEP-specific opsonins was linked to MEP, whereas non-MEP-specific opsonins obtained from infected patients deposited the C3 onto LPS and other unidentified Ag. These data show that MEP-specific opsonins function by depositing C3 onto the outer bacterial surface that differentiates them from non-MEP-specific opsonins produced in response to chronic infection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.