Abstract
The complement cascade is activated in humans and animals with acute pancreatitis. Activation of complement component C5 liberates C5a, C5a-desarg, and terminal complement complexes (TCCs) that increase capillary permeability, edema, and leukocyte chemotaxis at injured sites. Complement activation plays a major role in pathogenesis of capillary leak and edema formation in severe acute pancreatitis; however, the contribution of C5(C5a/C5a-desarg, TCCs) has not been defined. UsingHcgene mutant mice lacking circulating C5, the role of C5 in ligation-induced acute pancreatitis was evaluated. We performed the following experiments: C5-sufficient (Hc1/Hc1) and C5-deficient (Hc0/Hc0) mice had bile and pancreatic ducts ligated. Sham-operated mice had ducts dissected but not ligated. Mice were killed at 4, 8, and 24 hr after bile–pancreatic duct ligation. Serologic and morphologic evidences of acute pancreatitis were evaluated. Pancreatic edema was assessed using analysis of pancreatic water content, histologic edema score, and determination of wet weight ratio. After 4, 8, and 24 hr of bile–pancreatic duct ligation, hyperamylasemia and histologic changes of acute pancreatitis were observed in both C5-deficient and C5-sufficient mice. Edema developed in all mice with acute pancreatitis. However, when compared to C5-sufficient mice, mice deficient in C5 developed significantly less pancreatic edema at both 8 and 24 hr of bile–pancreatic duct ligation. This difference was not observed 4 hr after induction of acute pancreatitis. We conclude that C5 contributes to edema formation in murine ligation-induced acute pancreatitis. The presence of an early C5-independent phase, in conjunction with the observation of significant edema in mice deficient in C5, suggests there are other mediators of edema formation in this acute pancreatitis model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.