Abstract

Though binding sites for the complement factor C1q and the canonical fragment crystallizable (Fc) gamma receptors (Fc[Formula: see text]Rs) on immunoglobulin G (IgG) molecules overlap, how C1q decoration of immune complexes (ICs) influences their ability to engage Fc[Formula: see text]Rs remains unknown. In this report, we use recombinant human Fc multimers as stable IC mimics to show that C1q engagement of ICs directly and transiently inhibits their interactions with Fc[Formula: see text]RIII (CD16) on human natural killer (NK) cells. This inhibition occurs by C1q engagement alone as well as in concert with other serum factors. Furthermore, the inhibition of Fc[Formula: see text]RIII engagement mediated by avid binding of C1q to ICs is directly associated with IC size and dependent on the concentrations of both C1q and Fc multimers present. Functionally, C1q-mediated Fc blockade limits the ability of NK cells to induce the upregulation of the cosignaling molecule, 4-1BB (CD137), and to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). Although C1q is traditionally viewed as a soluble effector molecule, we demonstrate that C1q may also take on the role of an "immunologic rheostat," buffering Fc[Formula: see text]R-mediated activation of immune cells by circulating ICs. These data define a novel role for C1q as a regulator of immune homeostasis and add to our growing understanding that complement factors mediate pleiotropic effects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call