Abstract
The interaction of C1q with endothelial cells elicits a multiplicity of biologic responses. Although these specific responses are thought to be mediated by the interaction of C1q with proteins of the endothelial cell surface, the molecular identity of the participant(s) has not been clearly defined. In this study, we examined the role of two C1q-binding proteins, cC1q-R/CR and gC1q-R/p33, on C1q-mediated adhesion and spreading of human dermal microvascular endothelial cells (HDMVECs). A specific and dose-dependent adhesion and spreading was observed when HDMVECs were cultured in microtiter plate wells coated with concentrations of C1q ranging from 0 to 50 μg/ml. The extent of adhesion and spreading was similar to the adhesion seen on collagen-coated wells. Furthermore, the effect of C1q was mimicked by either polyclonal anti-cC1q-R or mAb 60.11, but not with isotype- and species-matched control IgG. More importantly, however, a 100% inhibition of spreading but not adhesion to C1q-coated wells was observed when HDMVECs were cultured in the presence of 30 mM of the peptide GRRGDSP but not GRRGESP. Furthermore, while anti-β1 integrin antibody blocked adhesion and spreading, antiα5 integrin only blocked spreading. Since earlier studies have shown that zinc induces the exposure of hydrophobic sites in the C-terminus of gC1q-R including the putative high-molecular weight kininogen (HK)-binding site corresponding to residues 204–218, we also examined the effect of zinc on antibody binding to cell surface gC1q-R. Flow cytometric data show that the binding of mAb 74.5.2, which recognizes residues 204–218, is greatly enhanced when endothelial cells were incubated in the presence of 50 μM zinc. In summary, our data show that: (a) C1q-mediated endothelial cell adhesion and spreading requires the cooperation of both C1q receptors and 1 integrins, and possibly other membrane-spanning molecules, and (b) zinc can induce the exposure of hydrophobic sites in the C-terminal domain of gC1q-R allowing a more efficient binding of mAb 74.5.2 and HK.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.