Abstract
Communication between the immune and endocrine system is important for the control of inflammation that is primarily mediated through the hypothalamic-pituitary-adrenal axis. The innate immune system rapidly responds to pathogens by releasing complement proteins that include the anaphylatoxins C3a and C5a. We previously reported the existence of C3a receptors in the anterior pituitary gland and now describe the presence of C5a receptors in the gland. C5a and its less active derivative (C5adR) can bind to its own receptor and to another receptor called C5L2. Using RT-PCR and immunocytochemistry, C5a receptors and C5L2 were demonstrated in the rat anterior pituitary gland and in several rodent anterior pituitary cell lines. Western blotting analysis showed that C5a stimulated the phosphorylation of MAPK and AKT but not p38; C5adR on the other hand, had no effect on any of the signal molecules investigated. The effects of C5a and C5adR on the secretion of the inflammatory molecule, macrophage migration inhibitory factor (MIF) were investigated by ELISA. Both compounds showed a dose-dependent inhibition of MIF release, 30-40% inhibition at around 35-70 nM agonist with IC50 values of around 20 nM. C5a and C5adR also stimulated ACTH secretion (up to 25%) from AtT-20DV16 cells. These data show that functional C5a receptors (C5a and C5L2) are present in the anterior pituitary gland and they may play a role in dampening down inflammation by inhibiting the release of MIF and stimulating the release of ACTH.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.