Abstract

A Zero Overhead Loop Buffer (ZOLB) is an architectural feature that is commonly found in DSP processors. This buffer can be viewed as a compiler managed cache that contains a sequence of instructions that will be executed a specified number of times without incurring any loop overhead. Unlike loop unrolling, a loop buffer can be used to minimize loop overhead without the penalty of increasing code size. In addition, a ZOLB requires relatively little space and power, which are both important considerations for most DSP applications. This paper describes strategies for generating code to effectively use a ZOLB. We have found that many common code improving transformations used by optimizing compiler on conventional architectures can be easily used to (1) allow more loops to be placed in a ZOLB, (2) further reduce loop overhead of the loops placed in a ZOLB, and (3) avoid redundant loading of ZOLB loops. The results given in this paper demonstrate that this architectural feature can often be exploited with substantial improvements in execution time and slight reductions in code size for various signal processing applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.