Abstract

A rich body of empirically grounded theory has developed about food webs—the networks of feeding relationships among species within habitats. However, detailed food-web data and analyses are lacking for ancient ecosystems, largely because of the low resolution of taxa coupled with uncertain and incomplete information about feeding interactions. These impediments appear insurmountable for most fossil assemblages; however, a few assemblages with excellent soft-body preservation across trophic levels are candidates for food-web data compilation and topological analysis. Here we present plausible, detailed food webs for the Chengjiang and Burgess Shale assemblages from the Cambrian Period. Analyses of degree distributions and other structural network properties, including sensitivity analyses of the effects of uncertainty associated with Cambrian diet designations, suggest that these early Paleozoic communities share remarkably similar topology with modern food webs. Observed regularities reflect a systematic dependence of structure on the numbers of taxa and links in a web. Most aspects of Cambrian food-web structure are well-characterized by a simple “niche model,” which was developed for modern food webs and takes into account this scale dependence. However, a few aspects of topology differ between the ancient and recent webs: longer path lengths between species and more species in feeding loops in the earlier Chengjiang web, and higher variability in the number of links per species for both Cambrian webs. Our results are relatively insensitive to the exclusion of low-certainty or random links. The many similarities between Cambrian and recent food webs point toward surprisingly strong and enduring constraints on the organization of complex feeding interactions among metazoan species. The few differences could reflect a transition to more strongly integrated and constrained trophic organization within ecosystems following the rapid diversification of species, body plans, and trophic roles during the Cambrian radiation. More research is needed to explore the generality of food-web structure through deep time and across habitats, especially to investigate potential mechanisms that could give rise to similar structure, as well as any differences.

Highlights

  • Perhaps the most fundamental property of life is its ability to use energy and materials to maintain and reproduce itself, in turn providing energy and materials to support more life

  • The ratio of motile to nonmotile animal genera across the Phanerozoic suggests that the prevalence of taxa with different trophic roles was relatively stable at different levels over four long intervals interspersed by rapid transition periods, with higher proportions of nonmotile genera in the early Paleozoic compared with the Cenozoic [9]

  • Even the most extreme link exclusions (i.e., 60% and 37% of total links in the Chengjiang and Burgess webs, respectively) did not affect the overall assessment that the niche model predicts the central tendency of the structure of Cambrian food webs well (Table 3). These findings suggest that even when link exclusions do affect the raw values of some properties, those property values generally change in ways that are consistent with niche model structure and how it scales with C and S, which themselves change slowly with link removal

Read more

Summary

Introduction

Perhaps the most fundamental property of life is its ability to use energy and materials to maintain and reproduce itself, in turn providing energy and materials to support more life This generation and consumption of biomass enabled the evolution of biological diversity and concomitant trophic structure among early metazoan ecosystems as documented in Cambrian fossil assemblages of the early Paleozoic [1,2,3]. Whereas virtually all phylum-level body plans first appeared and rapidly diversified by the Middle Cambrian [4,5], several researchers have suggested that shifts in dominant taxa with different functional forms across the Phanerozoic reflect fundamental differences in trophic structure between ancient and more recent ecosystems.

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call