Abstract
Research in Natural Language Processing (NLP) and computational linguistics highly depends on a good quality representative corpus of any specific language. Bangla is one of the most spoken languages in the world but Bangla NLP research is in its early stage of development due to the lack of quality public corpus. This article describes the detailed compilation methodology of a comprehensive monolingual Bangla corpus, KUMono. The newly developed corpus consists of more than 350 million word tokens and more than one million unique tokens from 18 major text categories of online Bangla websites. We have conducted several word-level and character-level linguistic phenomenon analyses based on empirical studies of the developed corpus. The corpus follows Zipf’s curve and hapax legomena rule. The quality of the corpus is also assessed by analyzing and comparing the inherent sparseness of the corpus with existing Bangla corpora, by analyzing the distribution of function words of the corpus and vocabulary growth rate. We have developed a Bangla article categorization application based on the KUMono corpus and received compelling results by comparing to the state-of-the-art models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.