Abstract
The economical competitiveness of stationary Low Concentration Photovoltaic (LCPV) modules is evaluated, starting from detailed expressions of the Levelized Cost of Energy (LCoE). For trackless LCPV to be competitive with standard modules, the key approach is to maximize the performance of concentrating optics in terms of yearly averaged effective optical power ratio. To express this a novel parameter named Pro,eff is introduced and its contribution to the expression of LCoE for LCPV modules is discussed. By comparing the LCoEs of standard and LCPV modules, threshold conditions for Pro,eff and for the relative unitary cost of concentrating optics Cr are found, in dependence on the geometrical concentration gain G and as a function of other sensitive design parameters.Aiming at the maximization of Pro,eff, the novel design of a modified prism-coupled compound parabolic stationary concentrator is introduced, as a trackless LCPV solution compatible with standard flat panel size, weight and installation infrastructures. It provides geometrical concentration gain G=5, an acceptance angle of 24° and Pro,eff=81%, using a reflective primary concentrator and high refractive index dielectric for the secondary optics. A first experimental validation of the approach is given by a proof-of-concept prototype, implemented in commercially available polymethylmethacrylate, suitable for quasi-stationary installations requiring seasonal adjustment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.