Abstract

Techno-economic variables for advanced biofuels produced from lignocellulosic biomass have been scrutinized and combined with a newly developed transparent model for simulating the competitiveness between conventional and advanced biofuels for road transport in the medium to long term in Germany. The influence of learning effects and feedstock cost developments has been highlighted, including also gaseous fuels. Thorough sensitivity analyses were undertaken. Previously reported cost assumptions for advanced biofuels were found to have been too optimistic. The most cost-competitive biofuels for most of the time period remained conventional biodiesel and bioethanol, but the costs of these options and biomethane and Synthetic Natural Gas (bio-SNG) converged in the medium term and thus other factors will play a decisive role for market developments of biofuels. Feedstock cost uncertainties for the future remain a challenge for long-term planning, and low-cost short-rotation coppice may change the picture more than any other parameter. Of the advanced biofuels, bio-SNG was found significantly more cost-competitive and resource efficient than Fischer-Tropsch-diesel and lignocellulose-based ethanol, but still requiring a dedicated long-term policy. The results and the large sensitivities of biofuel competitiveness stress the need for more data transparency and for thorough sensitivity analyses of the results in similar system studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call