Abstract

Let F be a family of sets in some metric space. In the F-chasing problem, an online algorithm observes a request sequence of sets in F and responds (online) by giving a sequence of points in these sets. The movement cost is the distance between consecutive such points. The competitive ratio is the worst case ratio (over request sequences) between the total movement of the online algorithm and the smallest movement one could have achieved by knowing in advance the request sequence. The family F is said to be chaseable if there exists an online algorithm with finite competitive ratio. In 1991, Linial and Friedman conjectured that the family of convex sets in Euclidean space is chaseable. We prove this conjecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.