Abstract

In situ neutron diffraction experiments have been performed under loading in cast-wrought (CW) and additively manufactured (AM) equiatomic CoCrNi medium-entropy alloys. The diffraction line profile analysis correlated the faulting-embedded crystal structure to the dislocation density, stacking/twin fault probability, and stacking fault energy as a function of strain. The results showed the initial dislocation density of 1.8 × 1013m−2 in CW and 1.3 × 1014m−2 in AM. It significantly increased up to 1.3 × 1015m−2 in CW and 1.7 × 1015m−2 in AM near fracture. The dislocation density contributed to the flow stress of 470 MPa in CW and 600 MPa in AM, respectively. Meanwhile, the twin fault probability of CW (2.7%) was about two times higher than AM (1.3%) and the stacking fault probability showed the similar tendency. The twinning provided strengthening of 360 MPa in CW and 180 MPa in AM. Such a favorable strengthening via deformation twinning in CW and dislocation slip in AM was attributed to the stacking fault energy. It was estimated as 18.6 mJ/m2 in CW and 37.5 mJ/m2 in AM by the strain field of dislocations incorporated model. Dense dislocations, deformation twinning, and atomic-scale stacking structure were examined by using electron backscatter diffraction (EBSD) and transmission electron microscopy (TEM).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.