Abstract

The addition of plant sterols/stanols (sterols or stanols) can reduce the solubilization of cholesterol in a model intestinal solution system. We studied the molecular structure of seven different sterols/stanols and the effect they had on the solubilization of cholesterol or cholesterol ester in a model intestinal solution. The differences in the molecular structures of the sterol/stanol species influenced their abilities to reduce the solubility of cholesterol in the competitive solubilization experiments. Cholestanol whose molecular structure resembled cholesterol was the most effective at reducing the solubilization of cholesterol and cholesterol ester, with the solubilities of cholesterol and cholesteryl oleate being 41% and 39% respectively of the values observed for the single solubilizate systems. β-Sitosterol was also able to reduce the solubilities of cholesterol and cholesteryl oleate to 43% and 45% of those observed in a single solubilizate system. Both, stigmasterol and brassicasterol have an unsaturated double bond in a steroid side chain and did not exhibit major cholesterol-lowering effects. These results were reflected by the Gibbs free energy change values (ΔG(0)) for solubilization, where the sterol/stanol species with cholesterol-lowering effects had similar or larger negative ΔG(0) values than those observed for cholesterol.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.