Abstract

Anthracene acts as a radical scavenger when present at low concentrations in irradiated hydrocarbons. A study has been made of the effect of radiation intensity and anthracene concentration on G( — A) , the number of anthracene molecules lost per 100 eV of energy absorbed. A theoretical calculation is made of the dependence of G( — A) on radiation intensity 1 and anthracene concentration ( A ), assuming that radiation-induced radicals (R.) are formed at random, and can either disappear by direct combination with one another, or with the anthracene to give RAR or RAAR bridges, or possibly some form of stabilized RA molecules. This theory is in good agreement with the experimental values of G( — A) measured at various low radiation intensities and anthracene concentrations. From the comparison estimates of the reactivity constants are derived. With very high intensity radiation quantitative agreement is less satisfactory, due to the non-steady conditions prevailing in a pulsed beam. The results obtained are compared with previous work on anthracene + hexane and iodine + cyclo hexane mixtures, in which the effect of radiation intensity was not investigated. The results reported here are of interest to the study of reaction kinetics in irradiated organic systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call