Abstract

Keddy's competitive hierarchy model describes species distribution patterns along gradients under equilibrium conditions and can potentially serve as an explanation for zonation patterns of intertidal seaweeds on rocky shores. One of the assumptions of the model is a competitive hierarchy with the top competitor occupying the benign end of the gradient. Another assumption is the consistency of competitive ranks of species in all environmental conditions included in the shared parts of species' fundamental niches. In laboratory replacement series experiments, the competitive ranks of pairs of Fucus species that occupy adjacent zones in the field were analysed and compared to ranks found in previous field experiments. Unattached thalli of Fucus serratus versus F. vesiculosus or F. vesiculosus versus F. spiralis, respectively, were held in aerated beakers to establish the competitive ranking of the three congeners. Each replacement series was conducted at three total densities. F. vesiculosus was clearly competitively dominant over F. serratus. In competition with F. spiralis, F. vesiculosus was only dominant at its lowest absolute input frequencies, but at higher frequencies dominance was reversed. At high densities, the total ranking was F. spiralis > F. vesiculosus > F. serratus, which is the opposite order to that which would be expected from Keddy's model. Although all three species thrived well under the laboratory conditions, the results did not reflect in situ competitive dominances, which may be an effect of nutrient competition in the laboratory. Keddy's assumption that competitive ranks are consistent over the whole range of fundamental niches cannot be supported for Fucus spp.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call