Abstract

Nanoparticles immersed in biological fluids readily adsorb proteins. The protein corona thus generated on the surface of the particles largely determines their biological fate. Since biological fluids, e.g., blood plasma, contain a large number of proteins, competitive adsorption must be considered. We study the competitive adsorption of lysozyme, cytochrome c, papain, and RNase A onto a soft charged polymeric layer. The experimental data of binary protein mixtures are compared to a theoretical model taking into account electrostatic and hydrophobic interactions between the proteins and the network. The interactions between bound proteins are modeled within a second virial approximation. The model possesses full generality and can be applied to the adsorption of an arbitrary number of protein types. The parameters describing the adsorption of a single protein type are obtained by isothermal titration calorimetry (ITC), while the competitive adsorption of a binary mixture is studied by fluorescence spectroscopy. The competitive adsorption can be predicted from the data related to the adsorption of the single types without adjustable parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.