Abstract

The effects of the acetylcholinesterase inhibitors physostigmine and tacrine on alpha4beta2 and alpha4beta4 subtypes of neuronal nicotinic acetylcholine (ACh) receptors, expressed in Xenopus laevis oocytes, have been investigated. In voltage-clamp experiments low concentrations of physostigmine and tacrine potentiate ion currents induced by low concentrations of ACh, whereas at high concentrations they inhibit ACh-induced ion currents. These dual effects result in bell-shaped concentration-effect curves. Physostigmine and tacrine, by themselves, do not act as nicotinic receptor againsts. The larger potentiation is observed with 10 microM: physostigmine on alpha4beta4 nicotinic receptors and amounts to 70% at 1 microM: ACh. The mechanism underlying the effects of physostigmine on alpha4beta4 ACh receptors has been investigated in detail. Potentiation of ACh-induced ion current by low concentrations of physostigmine is surmounted at elevated concentrations of ACh, indicating that this is a competitive effect. Conversely, inhibition of ACh-induced ion current by high concentrations of physostigmine is not surmounted at high concentrations of ACh, and this effect appears mainly due to noncompetitive, voltage-dependent ion channel block. Radioligand binding experiments demonstrating displacement of the nicotinic receptor agonist (125)I-epibatidine from its recognition sites on alpha4beta4 ACh receptors by physostigmine confirm that physostigmine is a competitive ligand at these receptors. A two-site equilibrium receptor occupation model, combined with noncompetitive ion channel block, accounts for the dual effects of physostigmine and tacrine on ACh-induced ion currents. It is concluded that these acetylcholinesterase-inhibiting drugs interact with the ACh recognition sites and are coagonists of ACh on alpha4-containing nicotinic ACh receptors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.