Abstract

This paper studies online optimization under inventory (budget) constraints. While online optimization is a well-studied topic, versions with inventory constraints have proven difficult. We consider a formulation of inventory-constrained optimization that is a generalization of the classic one-way trading problem and has a wide range of applications. We present a new algorithmic framework, \textsf{CR-Pursuit}, and prove that it achieves the minimal competitive ratio among all deterministic algorithms (up to a problem-dependent constant factor) for inventory-constrained online optimization. Our algorithm and its analysis not only simplify and unify the state-of-the-art results for the standard one-way trading problem, but they also establish novel bounds for generalizations including concave revenue functions. For example, for one-way trading with price elasticity, the \textsf{CR-Pursuit} algorithm achieves a competitive ratio that is within a small additive constant (i.e., 1/3) to the lower bound of $\ln \theta+1$, where $\theta$ is the ratio between the maximum and minimum base prices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.