Abstract

Polybrominated diphenyl ethers (PBDEs) are widespread contaminants in the environment. Microbial reductive debromination is one of the important attenuation processes for PBDEs in the anaerobic sediments. This study first investigated the interaction between BDE-47 and BDE-153 during the microbial degradation in wetland sediments by the multiple-line approaches including biodegradation kinetics, microbial community structures and stable isotope composition. BDE-47 and BDE-153 biodegradation fitted pseudo-zero-order kinetics, with the higher degradation rates in single than combined exposure, indicating the mutual inhibition in co-exposure condition. BDE-47 and BDE-153 shared the common dehalogenators (genus Dehalococcoides and Acinetobacter) with enrichment in combined exposure, indicating the potential competition in dehalogenating bacteria during biodegradation. Microbial degradation could lead to the isotopic fractionation of BDE-47 and BDE-153, with the smaller changes in δ13C in combined than single exposure. The apparent kinetic isotope effect of carbon (AKIEC) was different between BDE-47 and BDE-153 in single exposure, whilst identical in combined exposure, indicating the similar degradation mechanism for BDE-47 and BDE-153 in co-exposure condition. These results revealed that the competition on microbial degradation occurred among PBDEs in co-exposure condition, which was important for the comprehensive risk assessment of simultaneous exposure to multiple PBDE congeners in the environment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call