Abstract
We present a competitive learning vector quantization with evolution strategies for image compression. This technique embeds evolution strategies (ES) into the standard competitive learning vector quantization algorithm (CLVQ). After each iteration during the CLVQ training process, the so-far generated codebook is adjusted by the embedded ES through its recombination, mutation, and selection process. The proposed algorithm can efficiently overcome CLVQ's problems of under-utilization of neurons and initial codebook dependency. The embedding of ES greatly increases the algorithm's capability to avoid local minimums, leading to a global optimization. Experimental results demonstrate that it can obtain significant improvement over CLVQ and other comparable algorithms in image compression applications, especially when it involves larger codebooks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.