Abstract
Patch foraging presents a ubiquitous decision-making process in which animals decide when to abandon a resource patch of diminishing value to pursue an alternative. We developed a virtual foraging task in which mouse behavior varied systematically with patch value. Mouse behavior could be explained by a model integrating time and rewards antagonistically, scaled by a latent patience state. The model accounted for deviations from predictions of optimal foraging theory. Neural recordings throughout frontal areas revealed encoding of decision variables from the integrator model, most robustly in frontal cortex. Regression modeling followed by unsupervised clustering identified a subset of ramping neurons. These neurons' firing rates ramped up gradually (up to tens of seconds), were inhibited by rewards, and were better described as a continuous ramp than a discrete stepping process. Together, these results identify integration via frontal cortex ramping dynamics as a candidate mechanism for solving patch foraging problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.