Abstract

Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases (pAmpC) are enzymes able to hydrolyze a large variety of β-lactam antibiotics, including third-generation cephalosporins and monobactams. Broilers and broiler meat products can be highly contaminated with ESBL- and pAmpC-producing Escherichia coli strains, also known as extended-spectrum cephalosporin (ESC)-resistant E. coli strains, and can be a source for human infections. As few data on interventions to reduce the presence of ESC-resistant E. coli in broilers are available, we used transmission experiments to examine the role of competitive exclusion (CE) on reducing transmission and excretion in broilers. A broiler model to study the transmission of ESC-resistant E. coli was set up. Day-old chickens were challenged with an ESBL-producing E. coli strain isolated from healthy broilers in the Netherlands. Challenged and not challenged chicks were housed together in pairs or in groups, and ESBL-producing E. coli transmission was monitored via selective culturing of cloacal swab specimens. We observed a statistically significant reduction in both the transmission and excretion of ESBL-producing E. coli in chicks treated with the probiotic flora before E. coli challenge compared to the transmission and excretion in untreated controls. In conclusion, our results support the use of competitive exclusion as an intervention strategy to control ESC-resistant E. coli in the field.IMPORTANCE Extended-spectrum β-lactamases (ESBLs) and plasmid-mediated AmpC β-lactamases are a primary cause of resistance to β-lactam antibiotics among members of the family Enterobacteriaceae in humans, animals, and the environment. Food-producing animals are not exempt from this, with a high prevalence being seen in broilers, and there is evidence pointing to a possible foodborne source for human contamination. We investigated the effect of administration of a commercial probiotic product as an intervention to reduce the amount of ESBL-producing Escherichia coli in broilers. Our results showed a substantial reduction in the level of colonization of broiler intestines by ESBL-producing E. coli after administration of commercial probiotic product. The protective effect provided by these probiotics could be implemented on a larger scale in poultry production. Reductions in the levels of ESBL-producing Enterobacteriaceae in the food chain would considerably benefit public health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.