Abstract

Invasive plants are often associated with reduced cover of native plants, but rarely has competition between invasives and natives been assessed experimentally. The shrub Lonicera maackii, native to northeastern Asia, has invaded forests and old fields in numerous parts of eastern North America, and is associated with reduced tree seedling density in Ohio forests. A field experiment was conducted to test the effects of established L. maackii on the survival and growth of transplanted native tree species. The experiment examined above-ground competition (by removing L. maackii shoots) and below-ground competition (by trenching around transplanted seedlings). The effects of above-ground competition with L. maackii were generally more important than below-ground competition, though both were detected. Shoot treatment was the key determinant for the survival of all species except P. serotina, whereas trenching only enhanced survival for A. saccharum caged and P. serotina, and only in the shoot removal treatment. For the surviving seedlings, L. maackii shoot removal increased growth of A. saccharum seedlings protected with cages, but actually reduced the growth of unprotected Q. rubra and A. saccharum seedlings, indicating that L. maackii shoots confer some protection from deer browsing. Significant interactions between root and shoot treatment on Q. rubra growth parameters, specifically greatest growth in the shoot present & trenched treatment, is attributed to protection from deer browsing combined with release from below-ground competition. Despite this protective function of L. maackii shoots, the overall effect of this invasive shrub is increased mortality of native tree seedlings, suggesting it impacts the natural regeneration of secondary forests.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call