Abstract

Metal-organic frameworks (MOFs) are a class of crystalline porous materials with reticular architectures. Precisely tuning pore environment of MOFs has drawn tremendous attention but remains a great challenge. In this work, we demonstrate a competitive coordination approach to synthesize a series of zirconium-metalloporphyrinic MOFs through introducing H2O and monocarboxylic acid as modulating reagents, in which well-ordered mesoporous channels could be observed clearly under conventional transmission electron microscopy. Owing to plenty of unsaturated Lewis acid catalytic sites exposed in the visualized mesoporous channels, these structures exhibit outstanding catalytic activity and excellent stability in the chemical fixation of carbon dioxide to cyclic carbonates. The zirconium-based MOFs with ordered channel structures are expected to pave the way to expand the potential applications of MOFs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.