Abstract

Employing six cationic water-soluble organic dye molecules as probes, we have attempted to qualitatively understand the factors that govern the attraction between such molecules and the anionic water-soluble host, octa acid (OA). Examination of the competitive host–guest complexation between cucurbit[8]uril (CB[8]) and OA using absorption and emission spectroscopy revealed that the dye molecules included within CB[8] could be “pulled out” by OA. However, an order of magnitude higher concentration of OA was required to shift the equilibrium toward OA, suggesting that attraction between the anionic host OA and the cationic dye molecules such as cresyl violet perchlorate and methylene blue is weaker than the hydrophobic and cation–dipolar interaction between these dye molecules and CB[8]. The importance of Coulombic attraction between OA and dye molecules is also revealed by monomer-to-dimer conversion upon addition of OA to an aqueous solution of monomeric dye molecules. Under conditions where the dye-to-OA ratio is high, freely dissolved monomeric dye molecules are attracted to the exterior of OA and aggregate as dimers on the exterior wall of OA. On the other hand, at high ratios of OA to dye molecules, the dye molecules adsorb as monomers on the exterior of OA. Thus, the monomer-to-dimer ratio in aqueous solution can be controlled by adjusting the ratio of dye to OA molecules. The results presented are of value in qualitatively understanding the relative binding properties of ionic guests with ionic hosts. Studies are qualitative in nature, and further detailed quantitative studies planned for the future are likely to provide deeper understanding of the interaction between water-soluble dye molecules, OA, and CB.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call