Abstract

Mammalian heart Na+ channels exhibit approximately 100-fold higher affinity for block by external Zn2+ than other Na+ channel subtypes. With batrachotoxin-modified Na+ channels from dog or calf heart, micromolar concentrations of external Zn2+ result in a flickering block to a substate level with a conductance of approximately 12% of the open channel at -50 mV. We examined the hypothesis that, in this blocking mode, Zn2+ binds to a subsite of the saxitoxin (STX) binding site of heart Na+ channels by single-channel analysis of the interaction between Zn2+ and STX and also by chemical modification experiments on single heart Na+ channels incorporated into planar lipid bilayers in the presence of batrachotoxin. We found that external Zn2+ relieved block by STX in a strictly competitive fashion. Kinetic analysis of this phenomenon was consistent with a scheme involving direct binding competition between Zn2+ and STX at a single site with intrinsic equilibrium dissociation constants of 30 nM for STX and 30 microM for Zn2+. Because high-affinity Zn2(+)-binding sites often include sulfhydryl groups as coordinating ligands of this metal ion, we tested the effect of a sulfhydryl-specific alkylating reagent, iodoacetamide (IAA), on Zn2+ and STX block. For six calf heart Na+ channels, we observed that exposure to 5 mM IAA completely abolished Zn2+ block and concomitantly modified STX binding with at least 20-fold reduction in affinity. These results lead us to propose a model in which Zn2+ binds to a subsite within or near the STX binding site of heart Na+ channels. This site is also presumed to contain one or more cysteine sulfhydryl groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.