Abstract

The titanium methyl cation [Cp*((tBu3P=N)TiCH3]+ [B(C6F5)4]- reacts rapidly with H2 to give the analogous cationic hydride [Cp*((tBu3P=N)TiH(THF)n]+ [B(C6F5)4]- (n = 0, 1), which can be trapped and isolated as its THF adduct 1 x THF (n = 1). When generated in the presence of chloro or bromobenzene, 1 undergoes C-X activation or ortho-C-H activation, depending on the amount of dihydrogen present in the reaction medium. At approximately 4 atm of H2, C-X activation is preferred, giving the halocations [Cp*((tBu3P= N)TiX]+ [B(C6F5)4]- (2X) and C6H6/biphenyl mixtures. At lower pressures of H2 (>1 atm), the beta-halophenyl cations [Cp*((tBu3P=N)Ti(2-X-C6H4)]+ [B(C6F5)4]- (3X) are the products isolated. In the absence of H2, these compounds are quite thermally stable, but undergo beta-halogen elimination upon moderate heating, to give 2X (approximately 20%) and compounds 4X which are the result of reaction between 2X and benzyne via addition of the benzyne C-C triple bond across the Ti-N bond of the phosphinimide ligand. Thus, three separate bond activation processes are operative in this system: direct C-X activation, ortho-C-H activation, and indirect C-X activation via beta-halogen elimination. Mechanistic studies on all three processes have been done and support a radical pathway for direct C-X cleavage, sigma-bond metathesis of the ortho-C-H bond of eta(1)-coordinated C6H5X, and beta-halogen elimination from base-free compound 3X.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call