Abstract

Static apnea provides a unique model that combines transient hypertension, hypercapnia, and severe hypoxemia. With apnea durations exceeding 5 min, the purpose of the present study was to determine how that affects cerebral free-radical formation and the corresponding implications for brain structure and function. Measurements were obtained before and following a maximal apnea in 14 divers with transcerebral exchange kinetics, measured as the product of global cerebral blood flow (duplex ultrasound) and radial arterial to internal jugular venous concentration differences ( a-vD). Apnea increased the systemic (arterial) and, to a greater extent, the regional (jugular venous) concentration of the ascorbate free radical, resulting in a shift from net cerebral uptake to output ( P < 0.05). Peroxidation (lipid hydroperoxides, LDL oxidation), NO bioactivity, and S100β were correspondingly enhanced ( P < 0.05), the latter interpreted as minor and not a pathologic disruption of the blood-brain barrier. However, those changes were insufficient to cause neuronal-parenchymal damage confirmed by the lack of change in the a-vD of neuron-specific enolase and human myelin basic protein ( P > 0.05). Collectively, these observations suggest that increased cerebral oxidative stress following prolonged apnea in trained divers may reflect a functional physiologic response, rather than a purely maladaptive phenomenon.-Bain, A. R., Ainslie, P. N., Hoiland, R. L., Barak, O. F., Drvis, I., Stembridge, M., MacLeod, D. M., McEneny, J., Stacey, B. S., Tuaillon, E., Marchi, N., De Maudave, A. F., Dujic, Z., MacLeod, D. B., Bailey, D. M. Competitive apnea and its effect on the human brain: focus on the redox regulation of blood-brain barrier permeability and neuronal-parenchymal integrity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call