Abstract

Reliable task execution in machines that are prone to unpredictable crashes and restarts is both challenging and of high importance, but not much work exists on the analysis of such systems. We consider the online version of the problem, with tasks arriving over time at a single machine under worst-case assumptions. We analyze the fault-tolerant properties of four popular scheduling algorithms: Longest In System (LIS), Shortest In System (SIS), Largest Processing Time (LPT) and Shortest Processing Time (SPT). We use three metrics for the evaluation and comparison of their competitive performance, namely, completed load, pending load and latency. We also investigate the effect of resource augmentation in their performance, by increasing the speed of the machine. Hence, we compare the behavior of the algorithms for different speed intervals and show that there is no clear winner with respect to all the three considered metrics. While SPT is the only algorithm that achieves competitiveness on completed load for small speed, LIS is the only one that achieves competitiveness on latency (for large enough speed).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.