Abstract
Atomistic simulation techniques are used to simulate surface structure and adsorption behavior of scarcely floatable wollastonite mineral in the presence of molecular and dissociated water, methanoic acid, and methylamine. The latter two additives represent the two widely used collector head-group molecules. The static energy minimization code METADISE was used to perform the simulation to obtain pure surface energy and adsorption energy in the presence of added molecule. The hydroxylation was performed on those surfaces where low-coordinated silicon was made to saturate by bonding with hydroxyl group, and the subsequent charge neutralization was maintained by adding proton on single-coordinated surface oxygen. A comparison of surface energies revealed that all the surfaces become stabilized in the presence of added molecules; however, the presence of methylamine decreased the surface energy to lower values. Adsorption of dissociated water is preferred by the {100} and {102} surfaces, whereas the {001} surface preferred methylamine adsorption, because these show highly negative adsorption energies. In terms of molecular adsorption, the preferred adsorption sequence for all the surfaces is methylamine > methanoic acid > water without considering coadsorption. For the {100} and {102} surfaces, the adsorption energy values of carboxylic acid and amine are more negative than that of water and therefore we conclude that both carboxyl and amine head-group molecules adsorb preferably on wollastonite. Our simulation verify usability of carboxylic acid head group as widely used collectors for wollastonite flotation and, at the same time, it predicts the use of amine head-group collectors as possible modifiers, which corresponds well with our experimental findings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.