Abstract

Aggregates are the basic structural units of soils and play a crucial role in metal migration and transformation. Combined contamination of lead (Pb) and cadmium (Cd) is common in site soils, and the two metals may compete for the same adsorption sites and affect their environmental behavior. Herein, the adsorption behavior of Pb and Cd on aggregates of two soils and contributions of soil components in single and competitive systems were studied by combining cultivation experiments, batch adsorption, multi-surface models (MSMs), and spectroscopic techniques. The results demonstrated that < 2 µm size aggregate was the dominant sink for Pb and Cd competitive adsorption in both soils. Compared with Pb, the adsorption capacity and behavior of Cd were affected greatly under competition. MSMs prediction revealed that soil organic matter (SOM) contributed the most to Cd and Pb adsorption on aggregates (> 68.4%), but the dominant competitive effect occurred on different sites for Cd adsorption (primarily on SOM) and Pb adsorption (primarily on clay minerals). Further, 2 mM Pb coexistence caused 5.9 − 9.8% of soil Cd conversion to unstable species (Cd(OH)2). Thus, the competitive effect of Pb on Cd adsorption cannot be ignored in soils with high content of SOM and fine aggregates.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.