Abstract

Two‐step reaction mechanisms involving adsorbed monovalent intermediate ions for the electrodeposition of iron and nickel as single metals can be combined to form a predictive model for the codeposition of iron‐nickel alloys. Inhibition of the more noble nickel in the presence of iron is caused by preferential surface coverage of the adsorbed iron intermediate resulting from a difference between the two elements in Tafel constant for the electrosorption step. The role of hydrolyzed cations and surface pH is investigated and methods for evaluating the influence of pH are explored. The analysis shows that changes in surface pH with potential are not necessary for iron‐rich (anomalous) deposits, but that variations in pH from one electrolyte to another may influence deposit composition. The tendency toward iron‐rich deposits with increasing overpotential exists in all systems, however, and can be prevented only by decreasing the iron concentration of the bath. An extension of the analysis to account for transport limitations in baths with low iron concentration is developed and calculations with the model are presented to illustrate the effects of current density and electrolyte convection under conditions similar to those investigated experimentally in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.