Abstract
Adaptive speciation has been much debated in recent years, with a strong emphasis on how competition can lead to the diversification of ecological and sexual traits. Surprisingly, little attention has been paid to this evolutionary process to explain intrahost diversification of parasites. We expanded the theory of competitive speciation to look at the effect of key features of the parasite lifestyle, namely fragmentation, aggregation and virulence, on the conditions and rate of sympatric speciation under the standard 'pleiotropic scenario'. The conditions for competitive speciation were found similar to those for non-parasite species, but not the rate of diversification. Adaptive evolution proceeds faster in highly fragmented parasite populations and for weakly aggregated and virulent parasites. Combining these theoretical results with standard empirical allometric relationships, we showed that parasite diversification can be faster in host species of intermediate body mass. The increase in parasite load with body mass, indeed, fuels evolution by increasing mutants production, but because of the deleterious effect of virulence, it simultaneously weakens selection for resource specialization. Those two antagonistic effects lead to optimal parasite burden and host body mass for diversification. Data on the diversity of fishes' gills parasites were found consistent with the existence of such optimum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.