Abstract

Shear viscosity deviations Δη have been investigated by using density (ρ) and kinematic viscosity (ν) measurements for isobutyric acid + water (IBA + W) mixtures over the entire range of mole fractions at atmospheric pressure and at two temperatures (301.15 and 315.15 K). This study extends the temperature range from the five other temperatures investigated in a previous work, 1.055 K≤(T−Tc)≤14.055 K, both far from and close to the critical temperature. This system exhibits very large positive values of Δη due to increased hydrogen bonding interactions and the correlation length between unlike molecules in the critical region, and to very large differences between the molar volumes of the pure components at low temperatures. The results were also fitted with the Redlich–Kister polynomial equations and the recently proposed Herraez correlation equation. Comparisons between the two models at different temperatures and number of parameters are discussed. We note that, in this system where the shear viscosity η as a function of mole fraction (x1) of IBA presents a maximum, experimental data are in agreement with the two correlation models when more than three parameters are employed, especially for temperatures far from the critical temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.