Abstract

Owing to the unique cross-hatched structure of α crystal, the deformation behavior of isotactic polypropylene (iPP) differs considerably with the traditional polymers. The influence of crystalline structures on the cavitation and shearing effects of α-iPP under tensile loading is still not well established. In this work, various iPP samples were prepared via crystallizing from 0 °C to 130 °C, after which the crystalline structures were characterized via differential scanning calorimetry, polarized optical microscopy and scanning electron microscopy. The lamellar thickness and crystallinity of α-iPP precursor films change slightly, while the content of tangential lamellae in α-spherulite and the spherulite size increase significantly with the decreasing supercooling. On the other hand, the morphological evolution of α-iPP during stretching was tracked by in-situ two-dimensional small angle X-ray scattering. It is found that cavitation effect become dominant instead of shearing effect when the size of α-spherulite exceeds 25 μm. Furthermore, we disclose four typical deformation behaviors of α-iPP resulting from the competition between intra-spherulitic deformation and inter-spherulitic deformation, namely the shearing without cavitation, shearing then localized cavitation, homogeneous cavitation with concomitant shearing, and cavitation with absence of shearing. Accordingly, we construct a route for the structural evolution of α-iPP with different crystalline structures during stretching, which provides an effective guidance to produce diverse iPP films with desired structures and tunable functionalities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call