Abstract

We theoretically study the pulse-width dependence of the photoelectron angular distribution (PAD) from the resonance-enhanced two-photon single ionization of He by femtosecond (≲20 fs) extreme-ultraviolet pulses, based on the time-dependent perturbation theory and simulations with the full time-dependent Schrödinger equation. In particular, we focus on the competition between resonant and nonresonant ionization paths, which leads to the relative phase δ between the S and D wave packets distinct from the corresponding scattering phase shift difference. When the spectrally broadened pulse is resonant with an excited level, the competition varies with pulse width, and, therefore, δ and the PAD also change with it. On the other hand, when the Rydberg manifold is excited, δ and the PAD do not much vary with the pulse width, except for the very short-pulse regime.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.